Abstract
Large fish farms that include multiple-cages are becoming common in the aquaculture industry. Selecting an appropriate mooring structure and arrangement of cages is necessary to avoid fish cage and mooring grid system failures. A numerical model based on the lumped mass method and the principle of rigid body kinematics is developed to predict the hydrodynamic response of a fish cage and mooring grid system to regular waves. To validate the numerical model, a series of experiments is conducted. The numerical results of this model correspond with those obtained from experimental observations. Then, two cage arrangements are investigated, and the effect of the wave direction is analyzed. The results show that when the wave incident angle is 0°, the maximum tension forces on the anchor lines of the two cage arrangements are close to each other. There is not a significant difference between the effective fish cage volumes of the two cage arrangements. However, if one anchor line is broken, the two cage arrangements have different degrees of risk of having the cage structures swept away. When the propagation direction of the incident wave changes, the tension forces on the anchor lines also change due to different transfer load paths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.