Abstract

The upward gas-liquid cross flow around a square cylinder was simulated using two fluid model with the multi-scale turbulent model based on the variable interval time average method. The computational results show that the multi-scale turbulent model can successfully simulate lift coefficient, drag coefficient and vortex shedding characteristics of flow around a body, and can also accurately predict the void fraction distribution and flow structure. Compared with the experimental data, the results of the multi-scale model are better than that of Standard k-ε model and RNG k-ε model. Hence, the study of this paper certificates further that this model can be used in the simulation of the gas-liquid flow around bluff bodies and outher engineering application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.