Abstract

The numerical prediction of load capacity, stiffness, power loss etc. of hydrostatic journal bearings must be performed for technical applications. CFD offers one possibility but is time consuming. In the present contribution a fast working numerical method is introduced based on the numerical solution of the Reynolds equation for hydrodynamic lubrication (REHL). It is applied in order to examine the flow inside three-dimensional journal bearings. The emphasis lies on the treatment of journal bearings with porous material. By the application of porous material the lubricant can be fed uniformly around the shaft and therefore improves the reliability of the journal bearing. The contribution gives a short outline of the possibilities and limitations of the application of the REHL. A detailed description of a finite difference method is given by which the REHL is solved. It is described in detail how the load capacity, stiffness, volume flow rate etc. of classical hydrodynamic journal bearings and journal bearings with porous material can be treated by the REHL whereby the emphasis lies on the treatment of journal bearings with porous material. Darcy’s law is implemented in the numerical method in order to take into account the pressure loss of the porous material which is the flow restrictor of the journal bearing. Many results are shown and discussed. Pressure distributions, load capacity, volume flow rates through the porous material, direction of force for a hydrodynamic and porous bearing etc. are shown and discussed in dependence of the eccentricity of the shaft.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call