Abstract

As an alternative to fossil fuels, there is growing interest in using ammonia in combustion systems, particularly in internal combustion engines. As a competent competitor to hydrogen, it has various advantages. However, adding an ignition promoter such as hydrogen is still necessary to maintain combustion stability. Since the engine using ammonia also suffers from high NOx emissions, in this study, the effects of adding different gases on the performance and emissions of an ammonia-hydrogen dual-fuel engine were numerically investigated. The base engine was a diesel engine whose parameters were accustomed to running with ammonia-hydrogen as fuel. Hydrogen was injected via the port in the intake stage at 180 crank angle degrees (CAD) and mixed with the cylinder charge. Ammonia was directly injected into the cylinder at 350–370 CAD. Different gasses, including argon, nitrogen, carbon dioxide, and oxygen, were injected into the cylinder at various crank angles before, during, and after ammonia injection (330–350 CAD, 350–370 CAD, and 370–390 CAD). A MATLAB code was prepared to solve the governing equations, and the combustion mechanism was implemented in Cantera. The results showed that adding CO2 before or concurrent with the ammonia injection timing had undesirable impacts on the peak in-cylinder pressure and NO and NO2 emissions. The O2 addition had a negative on the emissions. Adding N2 and Ar concurrently with the ammonia injection (350–370 CAD) could diminish NO and NO2 emissions without drastically affecting the peak in-cylinder pressure and temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.