Abstract

In this paper, a step-shaped trench was introduced for the attenuation of train-induced vibration levels on trackside buildings. In order to evaluate the effectiveness of the proposed type of trench in comparison with a standard rectangular trench, a two-dimensional finite element model was developed under plane strain conditions using the ABAQUS software. The validity of the preliminary model of the track including a rectangular-shaped trench was confirmed by a close agreement of obtained results with those of previous studies. The effectiveness of the step-shaped trench compared with the rectangular type was studied in open and in-filled forms in terms of decreasing the effects of ground-borne vibrations on trackside structures. The obtained results for open and in-filled step-shaped trenches respectively showed 21% and 26.2% decreases in the maximum amplitude reduction ratio with respect to the common rectangular trench. Moreover, in the case of a real train moving loads, the proposed trench shape further decreased the values of peak particle velocity, root mean square and particle velocity decibel on a trackside structure compared with the values obtained for a rectangular-shaped trench.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.