Abstract

Linear Jet system which has a stator in addition to a rotor combines the best elements of two existing technologies of conventional screw propellers and water jets. In designing this propulsion system, tip clearance plays an essential role, since it causes the appearance of tip vortex that leads to a further loss in efficiency and a probability of cavitation phenomenon. Due to lack of any study in this regard, it is thus necessary to study tip clearance to find the appropriate geometry for linear jet propulsion system. In the current paper, hydrodynamic performance of linear jet propulsion system is numerically investigated. Accordingly, Ansys-CFX software is utilized and RANS unsteady equations are solved using SST turbulent model. Results of the proposed numerical model, in the form of thrust and torque coefficient as well as efficiency, are compared with available experimental data for a ducted propeller. It is concluded that most of the errors at various advance ratios for thrust and torque coefficients are less than 3% and relatively good agreement is observed. Hydrodynamic investigation involves five different sizes of tip clearance (2.5 to 10% of the rotor diameter). Simulation results indicate that thrust and torque coefficients decreases about 10% and 8% respectively, at the same advance coefficient (J) with an increase in tip clearance. Effects of tip clearance on tip-separation vortex and tip leakage vortex are also examined. At about 20% of chord length from the leading edge, separation occurs. As tip clearance size increases, the tip-leakage vortex also increases. At different advance ratios and higher tip clearance, an increase in vortex and a sudden decrease in thrust is generated by the propeller. By changing the time about 0.8 of the rotor periods, the evolution of the vortex generation behind the rotor at the tip of the blade is clearly observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call