Abstract

In this paper, the natural convection flow in a square cavity filled with nanofluid water-[Formula: see text] with a hot circular cylinder in the center of the cavity is numerically analyzed. All the walls are in lower temperatures than the circular cylinder. The Navier–Stokes and energy equations in the primitive variable form are discretized and solved by the finite element method (FEM). The effect of the volume fraction, the radius of the circular cylinder, the temperature and Rayleigh number is considered on the average Nusselt number. For the calculation of the viscosity coefficient and thermal conductivity coefficient of water-[Formula: see text] nanofluid, an experimental model is used which is the function of the volume fraction, temperature and nanoparticles diameter. This model is compared to the Brinkman model for viscosity and Maxwell model for thermal conductivity which are only the functions of volume fraction and are used by many researchers. The results show the experimental model leads to different results in comparison with the Brinkman model and Maxwell model, and indicate that the rate of the heat transfer can increase or decrease with the increase in volume fraction and temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call