Abstract

In this paper, the effect of ignition area on the propagation of a laminar premixed flame is investigated numerically in a two-dimensional channel. A single-step irreversible overall exothermic chemical reaction is applied to model combustion chemistry. The time-dependent system of governing equations for reacting flows is discretized using the finite volume method (FVM) on the hexahedral structure grid cells. The discretized system of equations is solved by adopting Front Flow Red, a multi-scale and -physics computational fluid dynamics (CFD) solver. The computed results show that the flame oscillates during the propagation owing to the strong roll-up of the vortices generated by the strong shear layer originating from the sudden high gas expansion flow at the large ignition area. The instantaneous acceleration of the vortices increases the flame surface area which gives rise to higher propagation speed; consequently, combustion time is shortened. These results suggest that the rapid increase in flame surface, caused by the large ignition area induced strong vortices, could be one of the potential methods in improving combustion efficiency by reducing the burning time in the internal combustion devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.