Abstract

The effect of a longitudinally layered armature on coilgun performance is investigated by using a 2-D axially symmetric cylindrical quasi-static finite-difference time domain method. The singularity extraction and Mur-type absorbing boundary condition are adopted with the numerical solution. The results obtained show that the best coilgun performance in the sense of the induced propulsive armature force is observed when the conductivity of the outer layer of the armature is smaller than that of the inner layer. This phenomenon can be explained in terms of impedance matching based on skin depth evaluation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.