Abstract

The dynamic response of underground structures and jointed rock masses remains lack of effective evaluations owing to the high complexity of rock masses and seismic waves. This study investigates numerically the seismic response of a tunnel structure and the surrounding rock mass subjected to a harmonic S-wave by using the DEM (Distinct Element Method) code of UDEC, and the effects of joint spacing, joint stiffness and wave frequency on the seismic response of tunnel lining and rock mass are evaluated. For a given wave frequency, the Peak Particle Velocities (PPVs) of the tunnel lining decrease as the joint spacing increases. The joint stiffness (including the normal and shear stiffness) has opposite effects on the PPVs of tunnel lining and surrounding rock mass. For given properties of joints, the PPVs decrease as a result of an increasing wave frequency. In addition, the study reveals that stress concentration occurs near the top of the tunnel vault. The main results could provide a technical support for the stability analysis and seismic design of underground structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call