Abstract

A shed cave structure with a sand cushion is often used as a protective structure for rockfall disasters. Because of the randomness and unpredictability of rockfall disasters, the cushions of shed caves often suffer multiple impacts from rockfalls. Aiming at the problem of multiple impacts of rockfall, this paper uses the three-dimensional discrete element method to study the dynamic response of multiple rockfall impacts on sand cushions from different heights. Before conducting large-scale simulation studies, the input parameters in the numerical model are verified with data from laboratory experiments. Analyzing the simulation results shows that when the same point is impacted multiple times, the maximum impact force and the maximum penetration depth will increase with the number of impacts. According to the numerical results, a calculation formula of the maximum impact force that considers the number of impacts is fitted. At the same time, considering the impact response when the rockfall impacts different positions multiple times, the distance range that the subsequent impact is not affected by the previous impact is given. The significance of studying the multiple impacts of rockfalls is shown by a numerical study of rockfalls impacting a sand cushion multiple times from different heights, and it provides a reference for the design of rockfall disaster-protection structures in practical engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call