Abstract
The present work examines the aerodynamic breakup of four liquid droplets in tandem formation at Diesel engine conditions using the Volume of Fluid (VOF) method. The examined Weber (We) numbers range from 15 up to 64 and the non-dimensional distances between the droplet centres (L/D0) vary from 1.25 up to 20. Focus is given on the breakup process of the third droplet of the row, which is regarded as a “representative chain droplet”; its development is compared against that of an isolated droplet at the same flow conditions. It is found that for small distances and depending on the We number, the obtained shapes and breakup modes between the droplets are different, with the representative chain droplet experiencing a new breakup mode in the multi-mode regime, termed as “shuttlecock”. This is characterized by an oblique peripheral stretching of the droplet caused by the acting of pressure forces at an off-centre region. Moreover, the drag coefficient and liquid surface area of the representative chain droplet are lower than the corresponding ones of the isolated droplet, while the breakup initiation time is longer and the minimum We number required for breakup (critical We) is higher; correlations are provided to quantify the effect of droplet distance on the aforementioned quantities. Generally, the droplet proximity becomes important for L/D0 < 9. Finally, the predicted drag coefficient is utilised in a simplified 0-D model that is capable of estimating the temporal evolution of droplet velocity of the representative chain droplet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.