Abstract

Efficient thermal management is essential for designing compact and high-performance heat sinks and heat exchangers. This study addresses the challenge of optimizing heat transfer while minimizing pressure losses in systems exposed to concentrated heat flux by proposing a novel approach that employs both active and passive vortex generators. Specifically, a uniform magnetic field generated by permanent magnets and a bluff body are utilized within a microchannel containing a 2 vol% ferrofluid. Numerical simulations were performed across Reynolds numbers ranging from 100 to 500 and magnetic field intensities up to 0.5 T to evaluate the system's performance. The results demonstrate that the combination of magnetic fields and a bluff body induces vortex generation, alters velocity distribution, and enhances flow mixing, resulting in a 30 % increase in heat transfer efficiency and an 11 % reduction in pressure drop under optimal conditions. Although the introduction of barriers led to a 3 % rise in pressure drop, the uniform magnetic field effectively mitigated friction by reducing flow separation and limiting surface contact. These findings highlight the potential of this method for improving the design of advanced thermal management systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.