Abstract

A procedure for the calculation of a supersonic flow of ideal gas near axisymmetric blunt bodies with protruding spikes is developed. The flow past a frustum of a cone with a protruding spherically blunt cylindrical spike as a dependence on the ratio K of the spike length1 to the diameter D of the flat end of the body and the Mach number M of the oncoming flow is studied. Several steady flow regimes are obtained, including the formation of circulation zones and internal shock waves in the shock layer. It is shown that mounting a spike in front of the frustum of a cone can lead to a 40–50% reduction in its drag. A full investigation of the variation of the drag coefficient as a dependence on K is carried out for M = 3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.