Abstract

A numerical model employing the SST k-ω turbulent model is built to predict the turbulent flow and heat transfer of supercritical methane in helically coiled tube for the heat dissipation of high-power electromechanical actuator. The heat transfer mechanism and the crucial influence factors viz. pressure and heat flux are discussed, and the comparison between the semi-empirical heat transfer correlations and the simulation results are performed. The calculation results indicate that: (1) before the pseudo-critical point of supercritical methane in helically tube, the effect of the buoyancy caused by the thermophysical properties cannot be neglected; (2) the domination of the centrifugal force on the heat transfer after the pseudo-critical point of supercritical methane can be confirmed obviously, contributed to the non-uniform distribution of flow and heat transfer coefficient in cross sections; (3) pressure and heat flux both exhibit significant effects on heat transfer of supercritical methane in helically coiled tube; (4) the semi-empirical heat transfer correlation from Zhang et al. shows the best agreement against the simulation result in the present paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call