Abstract

To improve our current understanding of tsunami-like solitary waves interacting with a row of vertical slotted piles on a sloping beach, a 3D numerical wave tank based on the CFD tool OpenFOAM® was developed in this study. The Navier-Stokes equations were employed to solve the two-phase incompressible flow, combining with an improved VOF method to track the free surface and a LES model to resolve the turbulence. The numerical model was firstly validated by our laboratory measurements of wave, flow and dynamic pressure around both a row of piles and a single pile on a slope subjected to solitary waves. Subsequently, a series of numerical experiments were conducted to analyze the breaking wave force in view of varying incident wave heights, offshore water depths, spaces between adjacent piles and beach slopes. Finally, a slamming coefficient was discussed to account for the breaking wave force impacting on the piles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call