Abstract

Liquid tanks are indispensable members of civil engineering structures like liquid petroleum gas storage tanks and aerospace structures. Fluids can act unpredictably under earthquake excitation or dynamic loads. Loads applied to tank changes during motion and there can be deformations at the tank or even at the structure where the tank is placed. This is called sloshing and many researchers study the behavior of it. In this research, behavior of baffles having different elastic modulus is investigated by a fluid-structure interaction (FSI) method. The numerical method is a fully coupled FSI method proposed by the authors, recently. The method, which is verified by many problems, uses smoothed particle hydrodynamics (SPH) for fluid domain, finite element method (FEM) for structural domain and contact mechanics for coupling of these two domains. In analysis, a tank and a baffle having constant initial geometry are excited by harmonic motions. Elasticity of baffle is changed to investigate the effect on sloshing. Results show that tip displacement of baffle has linear relation with its elasticity for higher rigidities. In contrast, tip displacement of baffle has constant tip displacement for lower rigidities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call