Abstract

Abstract The silted-up sediment in the reservoir may have a significant influence on the propagation of dam-break flows. In this paper, a three-dimensional numerical simulation of the silted-up dam-break flow is carried out. In this paper, simulations of three-dimensional silted-up dam-break flow are carried out. A kind of Eulerian–Eulerian two-fluid model (TFM), coupled level set and volume of fluid (CLSVOF) methods, is presented. In order to calculate the motions of the air–water interface and the sediment simultaneously, kinetic particle theory (KPT) and computational fluid dynamics (CFD) are combined. The rheology-based constitutive equations of sediment are also considered to simulate scouring and deposition. In addition, a partial-slip boundary condition (BC) for the velocity of the sediment phase at stationary walls is implemented. The simulation results of the benchmark case demonstrate that the proposed model can effectively simulate the silted-up dam-break flow while taking into account multi-interface capturing problems. Subsequently, the simulations of the silted-up dam-break flow over dry are investigated numerically in a three-dimensional long channel. The simulated results reveal that, in the dam-break flows, the silted-up sediment height has a significant influence on wave propagation, dynamic pressure loads, sediment transport, and sediment deposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call