Abstract
In this paper, we present numerical simulations of shock propagation in air over a one-dimensional transverse array of particles. Simulations are carried out by varying the particle spacing and shock Mach number. We compute the unsteady inviscid drag coefficient as a function of time and make relevant comparisons to that for a single particle. We find that deviations in the drag coefficient in time from that of a single particle can be correlated to the acoustic-particle interaction time. Finally, we investigate and classify the interaction of the bow shocks in front of the transverse array of particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.