Abstract
The run-up on offshore structures induced by the steep regular wave is a highly nonlinear flow with a free surface. This article focuses on the investigation of the steep regular wave run-up on a single vertical cylinder by solving the Navier-Stokes equations. A numerical wave tank is established based on the open-source package to simulate the wave scattering induced by a vertical cylinder. The VOF method is applied to capture the large deformation and breaking of the free surface. The numerical model is validated by experimental results. The relative wave run-ups on the front face and the back face along the centerline of a cylinder are analyzed. The changes of the relative run-ups with the wave steepness, the relative diameter and the relative depth are studied. It is found that the relative run-ups on the front face and the back face of the cylinder depend mainly on the wave steepness and the relative diameter, while the dependence on the relative depth is weak. The empirical formulae are proposed to calculate the relative run-ups in terms of the wave steepness of incident regular waves and the relative diameter of a cylinder.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.