Abstract

A finite-element (FE) simulation process integrating three dimensional (3D) with two-dimensional (2D) models is introduced to investigate the residual stress of a thick plate with 50-mm thickness welded by an electron beam. A combined heat source is developed by superimposing a conical volume heat source and a uniform surface heat source to simulate the temperature field of the 2D model with a fine mesh, and then the optimal heat source parameters are employed by the elongated heat source for the 3D simulation without trial simulations. The welding residual stress also is investigated with emphasis on the through-thickness stress for the thick plate. Results show that the agreement between simulation and experiment is good with a reasonable degree of accuracy in respect to the residual stress on the top surface and the weld profile. The through-thickness residual stress of the thick plate induced by electron beam welding is distinctly different from that of the arc welding presented in the references.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call