Abstract

Boundary slip as well as surface texturing is an effective method to improve the tribological performance of lubricated mechanical components. This article analyzes the combined effect of single texturing (pocketing) and wall slip on pressure that strongly related to the load-carrying capacity of slider bearing. The modified Reynolds equation for lubrication with non-Newtonian power-law fluid is proposed. The equation was solved numerically using a finite difference equation obtained by means of the micro-control volume approach. Further, numerical computations for slider bearing with several power-law indexes were compared with the presence of the pocket and slip. The numerical results showed that the characteristic of non-Newtonian is similar to Newtonian fluid with respect to hydrodynamic pressure distribution. The maximum load support is achieved when the pocket depth is equal to the film thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.