Abstract

Current paper is focused on transient modeling of blood flow through a tapered stenosed arteries surrounded a by solenoid under the presence of heat transfer. The oxygenated and deoxygenated blood are considered here by the Newtonian and Non-Newtonian fluid (power law and Carreau-Yasuda) models. The governing equations of bio magnetic fluid flow for an incompressible, laminar, homogeneous, non-Newtonian are solved by finite volume method with SIMPLE algorithm for structured grid. Both magnetization and electric current source terms are well thought-out in momentum and energy equations. The effects of fluid viscosity model, Hartmann number, and magnetic number on wall shear stress, shearing stress at the stenosis throat and maximum temperature of the system are investigated and are optimized. The current study results are in agreement with some of the existing findings in the literature and are useful in thermal and mechanical design of spatially varying magnets to control the drug delivery and biomagnetic fluid flows through tapered arteries.

Highlights

  • The influence of magnetic field and metallic nanoparticles through the tapered stenosed arteries is interested for the purpose of drug delivery control [1]

  • We investigated the effect of non-Newtonian behavior of blood flow on the resistance to flow, apparent viscosity, and wall shear stress in a stenosed artery by considering blood with a homogeneous Newtonian fluid, power-law fluid, and Carreau fluid model

  • With the purpose of study the effect of magnetic field and its space change on the optimal stenosis shape, we examined the effect of Hartmann number and Magnetic number on the minimum temperature all over the of blood vessel

Read more

Summary

Introduction

The influence of magnetic field and metallic nanoparticles through the tapered stenosed arteries is interested for the purpose of drug delivery control [1]. We investigated the effect of non-Newtonian behavior of blood flow on the resistance to flow, apparent viscosity, and wall shear stress in a stenosed artery by considering blood with a homogeneous Newtonian fluid, power-law fluid, and Carreau fluid model. As shown the maximum volumetric heating rate happens at stent wall (109) which remains constant throughout the tube (108) and the lower values occurs near the symmetry line (106), while the minimum come about in the recirculation zone after the stent (105).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.