Abstract

Traditional methods of initiating oblique detonation waves (ODWs) using wedges and cones face a fundamental challenge in reconciling the need for rapid initiation with stable combustion, especially at low flight Mach numbers (Ma < 8). This study introduces an innovative initiation configuration involving a truncated cone. By utilizing Euler equations coupled with detailed hydrogen–air chemical reaction models, the wave dynamics induced by the truncated cone configuration are systematically explored. The findings reveal that the truncated cone configuration enables more rapid initiation of ODWs compared to conventional cones, while also preserving improved stability when contrasted with wedge. This behavior can be attributed to the planar flow characteristics in the post-shock field of truncated cone, generated by the upstream wedge-shaped shock, and the Taylor–Maccoll flow characteristics, caused by the downstream conical shock. Furthermore, the study delves into the initiation and morphological changes with respect to the inner radius and angle of the truncated cone. As inner radii or truncated cone angle increase, three initiation wave systems emerge: stable, oscillatory, and detached modes. Analysis of the dynamic variations in pressure and velocity within the induction zone highlights that the upstream oscillation originates from the flow velocity in the induction zone falling below the local Chapman–Jouguet velocity of normal detonation wave (NDW). However, the upstream region of the truncated cone exhibits more pronounced expansion effects, leading to momentum loss, and subsequently, the weakening and even vanishing of the NDW. This prompts the downstream oscillation of the initiation structure, instigating a cyclic oscillation pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call