Abstract
Nucleating agents have long been employed in polymeric foaming processes to promote cell nucleation, increase cell density, and improve cell uniformity. This improvement in foam morphology is usually considered to result from the enhanced heterogeneous nucleation caused by the lower free energy barrier for cell nucleation. However, less is known about the underlying mechanisms of nucleating-agent-enhanced nucleation. In the polymer foaming process, pressure is a critical parameter that affects the degree of supersaturation of gas within a polymer−gas solution. In most previous theoretical studies on cell nucleation, a uniform pressure was assumed throughout the solution. Although this assumption may be acceptable when no particles have been added, its validity is questionable when nucleating agents are present. It has been speculated that growing cells that have already been nucleated generate local flow fields that induce tensile stresses around nearby particles, resulting in local pressure fluctuations....
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.