Abstract

In the present study, natural convection of fluid in an inclined enclosure filled with porous medium is numerically investigated in a strong magnetic field. The physical model is heated from left-hand side vertical wall and cooled from opposing wall. Above this enclosure an electric coil is set to generate a magnetic field. The Brinkman–Forchheimer extended Darcy model is used to solve the momentum equations, and the energy equations for fluid and solid are solved with the local thermal non-equilibrium (LTNE) models. Computations are performed for a range of the Darcy number from 10 −5 to 10 −1, the inclination angle from 0 to π/2, and magnetic force parameter γ from 0 to 100. The results show that both the magnetic force and the inclination angle have significant effect on the flow field and heat transfer in porous medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.