Abstract

To investigate the multidirectional wave run-up and forces on a large cylinder, a numerical model of multidirectional random wave loads on a large-scale cylinder is established based on the linear theory of wave interaction with a large-scale bottom-mounted vertical cylinder. The incident directional wave is specified using a discrete form of the Mitsuyasu-type spreading function. A wave basin experiment was carried out, and the numerical calculation results were verified by the results of the physical experiment. The results indicate that the wave directionality has significant effects on the distribution of the wave run-up around the cylinder. The transverse wave force occurs due to which the multidirectional waves at the two sides of the cylinder are totally different from each other at any time because of the wave directionality. Specially, for the multidirectional random wave with small directional spreading parameter ( s = 5), the transverse force Fy is about 57% of the normal force Fx and cannot be neglected any more. Results can provide reference for the real engineering design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.