Abstract

AbstractThis paper numerically investigates mixed convective heat transfer in a vented square cavity incorporated with a baffle that is subjected to external non‐Newtonian fluids (NNFs). Adiabatic conditions are imposed on the top and bottom walls, while cold temperature conditions are applied to the right and left solid boundaries. Heated NNF enters the cavity through the inlet and goes out through the outlet at three different locations, and it passes on a vertical baffle fixed at the base placed at different lengths. To examine the impact of the inlet and outlet positions, three different shapes of the outlet port located on the right wall and the inlet port on the left bottom wall were investigated. The impacts of Reynolds number (Re) of 100 ≤ Re ≤ 1000, Richardson number (Ri) of 0.1 ≤ Ri ≤ 3, power law index (n) of 0.6 ≤ n ≤ 1.4, length of baffle (Lb) of 0.2 ≤ Lb ≤ 0.6 and the outlet hole positions (S) of on the thermal and flow distributions in the cavity are taken into consideration in this paper. The results demonstrated that the flow's intensity and heat transfer increase with improvement in the Re and n at any baffle length. When the Ri increased from 0.1 to 3, increased by 23.3% at , and 13.8% at . Also, the Ri increment results in the augmentation of the average heat transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call