Abstract

Pore-like flaws, which are commonly encountered in brittle rock, play an important role in the engineering performance of structures constructed in or on rock. Experimental and numerical investigations of micro-cracking mechanism of rock containing a pore-like flaw can enhance our knowledge of rock damage/failure from a microscopic view. In this study, the influences of a two-dimensional circular pore-like flaw with respect to its diameter and position on the strength and micro-cracking behavior of brittle rock under uniaxial compression are numerically investigated. The results reveal that the strength and elastic modulus are significantly affected by the diameter and position in the pore. The uniaxial compressive strength and elastic modulus of the numerical model with a pore diameter of 15.44 mm located in the center of the model are found to decrease by 58.6% and 56.4% respectively when compared with those of the intact model without a pore. As the pore position varies while the porosity remains unchanged, the simulated uniaxial compressive strength and elastic modulus are also found to be generally smaller than those of the intact model without a pore. When a pore-containing numerical model is loaded, the micro-cracks are found to mostly initiate at the top and bottom of the pore, due to the local tensile stress increase. The simulation results of the early-stage micro-cracking process and stress distribution are in a generally good agreement with the analytical solution obtained from the Kirsch equations. The grain-based model used in this study can not only study the crack initiation on the boundary of the pore but also provide a convenient means to analyze and visualize the temporal and spatial micro-cracking process after the crack initiation, which accounts for the variations in the simulated strength and modulus satisfactorily from a micro-cracking view.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call