Abstract

Numerical analysis of airfoil geometries inspired by the down coat of the night owl is presented. The bioinspired geometry consists of an array of ‘finlet fences’, which is placed near the trailing edge of the baseline (NACA 0012) airfoil. Two fences with maximum nondimensional heights, and are investigated, where is the displacement thickness at 2.9% chord upstream of the airfoil trailing edge. Wall-resolved large eddy simulations are performed at chord-based Reynolds number, , flow Mach number, , and angle of attack, . The simulation results show significant reductions in unsteady surface pressure and farfield radiated noise with the fences, in agreement with the measurements available in the literature. Analysis of the results reveals that the fences increase the distance between the boundary layer turbulence (source) and the airfoil trailing (scattering) edge, which is identified to be the mechanism behind high-frequency noise reduction. These reductions are larger for the taller fence as the source-scattering edge separation is greater. Two-point correlations show that the fences reduce the spanwise coherence at low frequencies for separation distances greater than a fence pitch (distance between two adjacent fences) and increase the coherence for smaller distances, the increase being higher for the taller fence. This increase in coherence and the reduced obliqueness of the leading edge of the fence are hypothesized to be responsible for the small increase in farfield noise at low frequencies observed in the simulations with the taller fence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.