Abstract

Local scour around cylinders in a side-by-side or tandem arrangement under clear-water conditions is investigated numerically. Large eddy simulations with a Smagorinsky subgrid model are combined with a ghost-cell immersed boundary method, and details of the bed scouring are realized with sophisticated sediment and morphodynamic models. The scour patterns and depths in the two-cylinder cases are shown to be significantly influenced by the cylinder spacing. The features of the scour evolution, depth, and flow fields for a range of cylinder spacings are discussed. The maximum scour depth in the side-by-side cylinder cases increases as the distance between the cylinders decreases, whereas in the tandem cases, it tends to initially increase with increasing distance between the cylinders, after which it gradually decreases beyond the peak point. The maximum scour depths and trends computed using the present model show good agreement with the measured data in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call