Abstract

A one-dimensional hybrid model is developed to study the characteristics of energy and angular distributions of the ions and fast neutrals impinging on the rf-biased electrode in a dual-frequency capacitively coupled Ar discharge. The hybrid model consists of a fluid model that determines the spatiotemporal evolution of the discharge, and a Monte-Carlo model that, including the electron-neutral, ion-neutral, and fast neutral-neutral collisions, predicts the energy and angular distributions of the ions and fast neutrals on the rf-biased electrode. The influence of pressure, voltage amplitude, and frequencies of the two rf sources on the energy and angular distributions is discussed. The ion energy distributions (IEDs) appear to have multiple peaks in the dual-frequency capacitively coupled rf discharge rather than bimodal shape in a conventional single-frequency rf discharge. The ion angle distributions (IADs) have a significant peak at a small angle, and most ions strike to the process surface with the angle less than 4°. With the increase of the pressure, the maximum energy of IEDs and the peaks of IADs decrease. The structures of IEDs are controlled mainly by the voltage and frequency applied to the two rf sources. By decreasing the frequency or adding the voltage applied to the low-frequency (LF) source, the width of IEDs and the maximum energy increase. More ions strike to the electrode with a small angle by increasing either the voltage of LF source or the frequency of high-frequency source. The energy and angular distributions of the fast neutrals are correlative with those of the ions. Compared with the ions, the fast neutrals have a much lower energy and the scattering effect becomes more prominent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call