Abstract

Photovoltaic–thermal (PVT) technology is gaining popularity due to the diminishing availability of traditional fossil fuels and escalating environmental concerns. Enhancing the heat dissipation of PVT to improve its electrical and thermal performance remains a significant task. This study simulates the thermodynamic and heat transfer characteristics in multiple novel PVT structures by examining the impact of various factors such as collector materials, radiation intensity, mass flow rate, and inlet temperature. This work also identifies the optimal mass flow rate for locations with different solar radiation. The numerical results indicate that the electrical efficiency of a designed cylindrical structure has increased by 1.73% while the thermal efficiency has increased by 8.29%. Aluminum is identified as the most cost-effective material for the collector. The optimal mass flow rates in selected locations of Xining, Taiyuan, and Turpan are 0.36 kg/s, 0.35 kg/s, and 0.30 kg/s, respectively. The numerical results provide valuable insight into optimizing the design and operating conditions of PVT systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call