Abstract

Due to the development of intermittent renewable energy resources, hydropower plants are mostly operated under off-design conditions. This may lead to natural frequency excitation shortening the turbine life-span. To accurately estimate the fatigue life, it is necessary to evaluate the hydrodynamic damping parameters. In the present study, different flow regimes and their relationship with hydrodynamic damping are analyzed numerically using the γ - Reθt transition SST ĸ - ω turbulence model. The test case is a NACA0009 hydrofoil pitching around its center of mass. A good agreement between the present and previous numerical results is obtained. Consistent with the literature, hydrodynamic damping coefficient demonstrate consistently two different regions. The phase shift between the displacement and moment increases with the rise of the pitching frequency. After reaching a peak value at a reduced frequency of around κ = 5, the phase shift starts to decrease, and eventually approaches zero again. The damping behavior demonstrates an opposite trend. First, it reduces in spite of the phase shift increase, and after the inflection point, where the flow field changes from the drag mode to the thrust mode, it rises due to the torque development. The maximum of the damping occurs at the low frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call