Abstract

Expansive soils cover more than 25% of the total area of the United States and are subjected to shrink-swell behavior with moisture variation. With successive moisture and temperature variations over the seasons, the hydraulic conductivity of the expansive soil is subjected to change because of the development of shrinkage cracks which affect the vertical hydraulic conductivity, whereas the horizontal hydraulic conductivity remains negligibly constant. This affects the percolation behavior of the subgrade soil and, in turn, reduces the soil strength, as one of the major factors of slope failure. However, no study has been done on the change in the hydraulic properties of expansive soil with time and its effect on highway slopes. The current study intends to investigate the hydraulic conductivity and matric suction variation at different wet-dry cycles on highway slopes. An instantaneous profile method to investigate the changes in hydraulic conductivity during 1N to 5N wet-dry cycles was utilized. The finite element method in Plaxis was conducted to evaluate the effect of different frequencies and duration of rainfall on water intrusion, and the corresponding change in the matric suction of the highway slope. The selected rainfall pattern is evaluated at different intensities and durations of rainfall based on 100-years return periods. The flow analysis showed that the suction dropped at the highway slope with the presence of rainfall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call