Abstract

AbstractIn this paper, the role of seed rotation on the characteristics of the two‐dimensional temperature and flow field in the oxide Czochralski crystal growth system has been studied numerically for the seeding process. Based on the finite element method, a set of two‐dimensional quasi‐steady state numerical simulations were carried out to analyze the seed‐melt interface shape and heat transfer mechanism in a Czochralski furnace with different seed rotation rates: ωseed = 5‐30 rpm. The results presented here demonstrate the important role played by the seed rotation for influencing the shape of the seed‐melt interface during the seeding process. The seed‐melt interface shape is quite sensitive to the convective heat transfer in the melt and gaseous domain. When the local flow close to the seed‐melt interface is formed mainly due to the natural convection and the Marangoni effect, the interface becomes convex towards the melt. When the local flow under the seed‐melt interface is of forced convection flow type (seed rotation), the interface becomes more concave towards the melt as the seed rotation rate (ωseed) is increased. A linear variation of the interface deflection with respect to the seed rotation rate has been found, too. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call