Abstract

This is a novel study for assessing the heat transfer enhancement in a multi-row inline-tube heat exchanger using hybrid vortex generator (VG) arrays, i.e., rectangular winglet pairs (RWPs) with different geometrical configurations installed in coherence for enhanced heat transfer. The three-dimensional numerical study uses a full scale seven-tube inline heat exchanger model. The effect of roll of rectangular winglet VG on heat transfer enhancement is analyzed and optimized roll angle is determined for maximum heat transfer enhancement. Four different configurations are analyzed and compared in this regard: (a) single RWP (no roll); (b) 3RWP-inline array(alternating tube row with no roll of VGs); (c) single RWP (with optimized roll angle VGs); and (d) 3RWP-inline array(alternating tube row with all VGs having optimized roll angle). It was found that the inward roll of VGs increased the heat transfer from the immediately downstream tube but reduced heat transfer enhancement capability of other VG pairs downstream. Further, four different hybrid configurations of VGs were analyzed and the optimum configuration was obtained. For the optimized hybrid configuration at Re = 670, RWP with optimized roll angle increased heat transfer by 17.5% from the tube it was installed on and by 42% from the immediately downstream tube. Increase in j/ƒ of 36.7% is obtained by use of hybrid VGs in the optimized hybrid configuration. The deductions from the current study are supposed to well enhance the performance of heat exchangers with different design configurations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call