Abstract

The gradient porous materials (GPMs)-filled pipe structure has been proved to be effective in improving the heat transfer ability and reducing pressure drop of fluid. A GPMs-filled pipe structure in which radial pore-size gradient increased nonlinearly has been proposed. The field synergy theory and tradeoff analysis on the efficiency of integrated heat transfer has been accomplished based on performance evaluation criteria (PEC). It was found that the ability of heat transfer was enhanced considerably, based on the pipe structure, in which the pore-size of porous materials increased as a parabolic opening up. The flow resistance was the lowest and the integrated heat transfer performance was the highest when radial pore-size gradient increasing as a parabolic opening down.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.