Abstract

Accurately predicting gas and sand production from oceanic gas hydrate reservoirs considering multi-field coupling effects is crucial. To address this, we first systematically summarized the multi-field coupling effect of gas hydrate-bearing sediments (GHBS) during sand production and gas production. After that, we developed a thermo-hydro-mechanical coupled model that incorporates both sand detachment and sand migration (THMS) to describe the complex behaviors of fluid and solid flow. We then solved this model using the implicit pressure-explicit saturation (IMPES) method and incremental scheme for a cylindrical core and presented a detailed algorithm derivation process for reproducibility. The newly developed model was validated through comparison with available experimental data. Subsequently, several parameter effects, including outlet pressure, initial hydrate saturation, load stress, and sand detachable ratio, on the behaviors of fluid and solid flow were studied. The computation results indicate that high sand production can be induced by low outlet pressure, high initial hydrate saturation, high load stress, and high sand detachable ratio. Meanwhile, high cumulative gas production can be caused by low outlet pressure, low initial hydrate saturation, high load stress, and high sand detachable ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.