Abstract

AbstractIn industrial processing of wet particulate materials, the liquid governs the formation, growth, and breakup of particle agglomerates. Pendular liquid bridges between two particles have been extensively investigated in the literature. Despite the interest, the complexities in the funicular regime, which involve multiple spheres, have remained mostly uncovered. Validated numerical simulations are utilized herein to examine funicular liquid bridge shapes, interaction forces, and rupture conditions as functions of the liquid volume, pressure difference, interparticle distance, and contact angle for three‐sphere and four‐sphere arrangements, including the presence of a particle of different size. The agglomerate strength is quantitatively characterized for a broad range of conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.