Abstract

Abstract In this study, lean mixed-mode combustion is numerically investigated using computational fluid dynamics (CFD) in a spark-ignition engine. A new E30 fuel surrogate is developed using a neural network model with matched octane numbers. A skeletal mechanism is also developed by automated mechanism reduction and by incorporating a NOx submechanism. A hybrid approach that couples the G-equation model and the well-stirred reactor model is employed for turbulent combustion modeling. The developed CFD model is shown to well predict pressure and apparent heat release rate (AHRR) traces compared with experiment. Two types of combustion cycles (deflagration-only and mixed-mode cycles) are observed. The mixed-mode cycles feature early flame propagation and subsequent end-gas auto-ignition, leading to two distinctive AHRR peaks. The validated CFD model is then employed to investigate the effects of NOx chemistry. The NOx chemistry is found to promote auto-ignition through the residual gas, while the deflagration phase remains largely unaffected. Sensitivity analysis is finally performed to understand effects of fuel properties, including heat of vaporization (HoV) and laminar flame speed (SL). An increased HoV tends to suppress auto-ignition through charge cooling, while the impact of HoV on flame propagation is insignificant. In contrast, an increased SL is found to significantly promote both flame propagation and end-gas auto-ignition. The promoting effect of SL on auto-ignition is not a direct chemical effect; it is rather caused by an advancement of the combustion phasing, which increases compression heating of the end-gas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call