Abstract

In this study, the fluid flow and heat transfer behavior in a novel circular wavy microchannel design is numerically examined and compared with a sinusoidal wavy microchannel. The numerical studies were carried out in the Reynolds number range of 100–300 under a constant heat flux wall boundary condition. The sinusoidal profile has a continuously varying curvature, which peaks at the crests and troughs, and diminishes to naught at each section at the middle of adjacent crests and troughs. On the other hand, the circular profile has a curvature constant in magnitude (and alternating in direction). Heat transfer in wavy microchannels is enhanced by vortex flow induced by centrifugal instability, which in turn depends on the curvature of fluid channel profile. The sinusoidal wavy microchannel has a curvature continuously varying in a large range results in large fluctuations of Nusselt number, while the Nusselt number in the circular channel has smaller fluctuations. Hence, heat transfer performance of the circular wavy microchannel is higher than that of the sinusoidal wavy microchannel. Velocity vectors, velocity contours, and temperature contours are presented to aid the explanation of hydrodynamic and heat transfer characteristics of fluid flow in the novel circular wavy microchannels. The Nusselt number and pressure drop along the channel are also compared with the sinusoidal wavy microchannel using a performance factor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call