Abstract

Apart from electric vehicles, most internal combustion (IC) engines are powered while burning petroleum-based fossil or alternative fuels after mixing with inducted air. Thereby the operations of mixing and combustion evolve in a turbulent flow environment created during the intake phase and then intensified by the piston motion and influenced by the shape of combustion chamber. In particular, the swirl and turbulence levels existing immediately before and during combustion affect the evolution of these processes and determine engine performance, noise and pollutant emissions. Both the turbulence characteristics and the bulk flow pattern in the cylinder are strongly affected by the inlet port and valve design. In the present paper, large eddy simulation (LES) is appraised and applied to studying the turbulent fluid flow around the intake valve of a single cylinder IC-engine as represented by the so called magnetic resonance velocimetry (MRV) flow bench configuration with a relatively large Reynolds number of 45,000. To avoid an intense mesh refinement near the wall, various subgrid scale models for LES; namely the Smagorinsky, wall adapting local eddy (WALE) model, SIGMA, and dynamic one equation models, are employed in combination with an appropriate wall function. For comparison purposes, the standard RANS (Reynolds-averaged Navier–Stokes) k- ε model is also used. In terms of a global mean error index for the velocity results obtained from all the models, at first it turns out that all the subgrid models show similar predictive capability except the Smagorinsky model, while the standard k- ε model experiences a higher normalized mean absolute error (nMAE) of velocity once compared with MRV data. Secondly, based on the cost-accuracy criteria, the WALE model is used with a fine mesh of ≈39 millions control volumes, the averaged velocity results showed excellent agreement between LES and MRV measurements, revealing the high prediction capability of the suggested LES tool for valve flows. Thirdly, the turbulent flow across the valve curtain clearly featured a back flow resulting in a high speed intake jet in the middle. Comprehensive LES data are generated to carry out statistical analysis in terms of (1) evolution of the turbulent morphology across the valve passage relying on the flow anisotropy map, (2) integral turbulent scales along the intake-charge stream, (3) turbulent flow properties such as turbulent kinetic energy, turbulent velocity and its intensity within the most critical zone in intake-port and along the port length, it further transpires that the most turbulence are generated across the valve passage and these are responsible for the in-cylinder turbulence.

Highlights

  • In the internal combustion (IC)-engine design, port/valve and cylinder head contour play crucial roles as they are largely responsible for the overall flow structure inside an engine cylinder

  • Comprehensive large eddy simulation (LES) data are generated to carry out statistical analysis in terms of (1) evolution of the turbulent morphology across the valve passage relying on the flow anisotropy map, (2) integral turbulent scales along the intake-charge stream, (3) turbulent flow properties such as turbulent kinetic energy, turbulent velocity and its intensity within the most critical zone in intake-port and along the port length, it further transpires that the most turbulence are generated across the valve passage and these are responsible for the in-cylinder turbulence

  • The present study focuses on the steady-state flow configuration with two main objectives: (1) to evaluate the influence of intake valve/port especially in the generation of early flow turbulence and the development of global structures which have a strong impact on the in-cylinder flow and on the subsequent processes, and (2) to assess the predictive capability of the adopted numerical methodology [13,31,32] in view of future work towards a reliable analysis of in-cylinder flow including moving intake and exhaust valves under fully realistic operating conditions

Read more

Summary

Introduction

In the IC-engine design, port/valve and cylinder head contour play crucial roles as they are largely responsible for the overall flow structure inside an engine cylinder. In order to carry out in-depth studies of individual processes, it is very useful to isolate and reduce the complexity of the engine configuration In this regard, the present study focuses on the steady-state flow configuration with two main objectives: (1) to evaluate the influence of intake valve/port especially in the generation of early flow turbulence and the development of global structures (tumble or swirl motions) which have a strong impact on the in-cylinder flow and on the subsequent processes, and (2) to assess the predictive capability of the adopted numerical methodology [13,31,32] in view of future work towards a reliable analysis of in-cylinder flow including moving intake and exhaust valves under fully realistic operating conditions.

LES Methodology
Engine Configuration
Numerical Setup
Results and Discussion
Validation
Turbulence Evolution along the Intake Port
Summary
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call