Abstract

A numerical investigation of a single highly confined bubble moving through a millimeter-scale channel in the absence of phase change is presented. The simulation includes thermal boundary conditions designed to match those of completed experiments involving bubbly flows with large numbers of bubbles. The channel is horizontal with a uniform-heat-generation upper wall and an adiabatic lower boundary condition. The use of a Lagrangian framework allows for the simulation of a channel of arbitrary length using a limited computational domain. The liquid phase is a low-Reynolds-number laminar flow, and the phase interactions are modeled using the volume-of-fluid (VOF) method with full geometric reconstruction of the liquid/gas interface. Results are presented for three bubble diameters, which include two levels of confinement within the channel and two liquid flow rates. Bubble shape and speed closely match experimental observations for each bubble size and liquid flow rate. Nusselt numbers in the bubble wake for all configurations follow a power law relationship with distance behind the bubble. Important dynamical structures include a pair of vortical structures at the rear of the bubble associated with the primary heat transfer enhancement and a pair of prominent liquid jets oriented in the transverse direction on either side of the bubble.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.