Abstract

Flow and heat transfer of supercritical water in the 1000MW supercritical boiler water-cooled wall tube were investigated with numerical simulation method. Half of the water-cooled wall tube was heated near the furnace, and heat flux varied along the height of the furnace. The other half of the water-cooled wall tube was in heat insulation. The RNG k-ε model was used in numerical analysis. The influences of buoyancy, centrifugal force, flow deviation, inlet temperature deviation and specific heat on heat transfer were investigated. Buoyancy effect and reduction of thermal conduction of supercritical water lead to heat transfer deterioration, while centrifugal force results in heat transfer enhancement. The heat transfer coefficient increases with the increase of inlet flow rate. Various heat transfer correlations on predicting half-side heating condition were presented and compared. Furthermore, a new heat transfer correlation was proposed for supercritical water in the water-cooled wall tube under half-side heating with non-uniform heat flux.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call