Abstract
In the present study, a numerical investigation has been made to predict the laminar flow and heat transfer through a rectangular channel with adiabatic, different configuration obstacles which are arranged alternately on the upper and lower walls of the channel. These walls are subjected to a constant heat flux 500 W/m2. The effect of obstacles number, and obstacles shape on the flow and heat transfer characteristics with different Reynolds number (100,200,300,400,500,600and 700) have been studied. The continuity, momentum, and energy governing equations are solved by the finite volume method. The results of this study reveal that the obstacles have an obvious effect on parameters of the flow and heat transfer enhancement. The heat transfer is improved more as the obstacle's number increase. Further that, using rectangular obstacle leads to increase heat transfer rate higher than the rest of shapes for all Reynolds number tested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.