Abstract

abstractFlame stabilisation in a combustor having vortices generated by flame holding devices constitutes an interesting fundamental problem. The presence of vortices in many practical combustors ranging from industrial burners to high speed propulsion systems induces vortex–flame interactions and complex stabilisation conditions. The scenario becomes more complex if the flame sustains after separating itself from the flame holder. In a recent study [P.K. Shijin, S.S. Sundaram, V. Raghavan, and V. Babu, Numerical investigation of laminar cross-flow non-premixed flames in the presence of a bluff-body, Combust. Theory Model. 18, 2014, pp. 692–710], the authors reported details of the regimes of flame stabilisation of non-premixed laminar flames established in a cross-flow combustor in the presence of a square cylinder. In that, the separated flame has been shown to be three dimensional and highly unsteady. Such separated flames are investigated further in the present study. Flame–vortex interactions in separated methane–air cross flow flames established behind three bluff bodies, namely a square cylinder, an isosceles triangular cylinder and a half V-gutter, have been analysed in detail. The mixing process in the reactive flow has been explained using streamlines of species velocities of CH4 and O2. The time histories of z-vorticity, net heat release rate and temperature are analysed to reveal the close relationship between z-vorticity and net heat release rate spectra. Two distinct fluctuating layers are visible in the proper orthogonal decomposition and discrete Fourier transform of OH mass fraction data. The upper fluctuating layer observed in the OH field correlates well with that of temperature. A detailed investigation of the characteristics of OH transport has also been carried out to show the interactions between factors affecting fluid dynamics and chemical kinetics that cause multiple fluctuating layers in the OH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.