Abstract
In this paper, hip implants made of Ti-6Al-4V titanium alloy are analyzed numerically using Extended Finite Element Method XFEM. The combined effect of corrosion and fatigue was considered here since this is a common cause of failure of hip implants. Experimental testing of Ti-6Al-4V alloy was performed to determine its mechanical properties under different working environments, including normal, salty, and humid conditions. The integrity and life of the hip implant were assessed using the Linear Elastic Fracture Mechanics (LEFM) approach. For this purpose, the conditional fracture toughness Kq using CT specimens from all three groups (normal, humid, salty conditions) were determined. This provided insight into how different aggressive environments affect the behavior of Ti-6Al-4V alloy; i.e., how much its resistance to crack growth would degrade depending on conditions corresponding to the real exploitation of hip implants. Next, analytical and XFEM analyses of fatigue behavior in terms of the number of cycles were performed for all three groups, and the obtained results showed good agreement, confirming the validity of the integrity assessment approach shown in this work, which also represented a novel approach since fatigue and corrosion effects were investigated simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.