Abstract
In hot and dry urban environments, courtyards help mitigate extreme heat and influence the urban microclimate. These structures not only provide light and private outdoor spaces but also aid in mitigating the urban heat island (UHI) effect through improved airflow and evapotranspiration. Courtyards, being central open-air areas enclosed by buildings, are crucial in creating opportunities for natural ventilation driven by wind and buoyancy-induced forces, thus serving as a microclimatic regulator. This study investigates the role of courtyards in modulating their microclimate and adjacent indoor areas by integrating evaporative cooling strategies to enhance cooling in these spaces. While numerous studies have been conducted on the role of water bodies in evaporative cooling, the aero-thermal impact on adjacent indoor spaces remains less understood. Addressing this gap, the present research explores the effect of an evaporative cooling system on the wind and thermal conditions within a courtyard and examines different natural ventilation modes, namely, single-sided and crossflow ventilation, in indoor spaces. A computational fluid dynamics (CFD) model, validated against wind tunnel experimental data, was employed to simulate various evaporative cooling water spray configurations. The results reveal complex courtyard microclimates with diverse cooling effects influenced by room orientation and floor level. Specifically, in single-sided ventilated courtyards, water sprays significantly improved the indoor thermal environment, with the average temperature across all rooms decreased by 2.06 °C, and humidity increased by 4.29 %. However, in cross-ventilated courtyards, water sprays' cooling and humidifying effects were relatively less effective. This research underscores the potential of evaporative cooling technology in improving the microclimate of courtyards, with practical applications extending to urban design and architecture. By tailoring cooling strategies to specific courtyard configurations, urban planners and architects significantly improve indoor comfort levels and energy efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.