Abstract

This paper examines the potential of using ammonia (NH3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$_3$$\\end{document}) as a primary fuel in heavy-duty engines for decarbonization, with some challenges yet to be addressed. It presents a numerical study of a Reactivity Controlled Compression Ignition engine, where pilot diesel is used to ignite the premixed ammonia/air mixture. The numerical model and combustion mechanism are validated against engine experimental results using methanol and iso-octane fuels and ignition delay times of ammonia/n-heptane mixtures measured in a rapid compression machine. The findings show that the engine can effectively operate with up to 50% of the total energy supplied by premixed ammonia, albeit with slightly elevated NO emissions compared to a diesel-fueled engine. Increasing ammonia further leads to lower combustion efficiency. Hydrogen can be utilized in the ammonia engine to enhance ammonia combustion; however, NO emissions increase further. Ammonia leakage primarily originates from regions near the cold wall, the center of the cylinder, and the crevice. N2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$_2$$\\end{document}O mainly forms at the ammonia flame front. Emission of N2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$_2$$\\end{document}O is therefore mainly due to flame front quenching near the wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.